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a b s t r a c t

Management of prairie dogs in the past has included poisoning, fumigants, barriers, and relocation.
Because of the diverse attitudes related to prairie dog management, nonlethal methods that allow the
existence of prairie dogs but help minimize damage related to population growth need to be developed.
GonaConTM is an immunocontraceptive vaccine that elicits antibodies to native GnRH; this prevents the
secretion of reproductive hormones necessary for sperm and oocyte production. Prairie dogs were vacci-
nated with 0.1, 0.2, or 0.4 mL of the GonaConTM emulsion intramuscularly in the upper thigh containing
100, 200, or 400 �g GnRH conjugate, respectively. Control animals were vaccinated with 0.4 mL saline
emulsion in the upper thigh. Blood samples (≤1 mL) were taken from the femoral vein once pretreatment
and at 1, 2, 3, 4, 6, and 15 months post-vaccination. Age (adult or juvenile) did not affect immune response
ontraception

ynomys ludovicianus
onaConTM

rairie dogs

to GonaConTM. Antibody titers were higher in the 200 and 400 �L GonaConTM groups than in the 100 �L
group, and there was no difference between the 200 and 400 �L GonaConTM groups. No adverse effects
of GonaConTM were noted on weight or blood chemistry parameters during the study. GonaConTM will
likely contracept prairie dogs for ≥1 year in the field using either 200 or 400 �g conjugate. GonaConTM

could be incorporated into management plans to help maintain prairie dog populations while reducing
o ove
habitat degradation due t

. Introduction

Research of wildlife contraceptives has resulted in the regis-
ration of OvoControl for Canada geese (Branta canadensis) and
igeons (Columba livia), and GonaConTM for white-tailed deer
Odocoileus virginianus) [1]. Registrations of these products for
ther species will likely occur. As wildlife contraceptives become
vailable for more species, information on efficacy and health
ffects will be needed to determine their appropriateness for par-
icular species.

Discussions as to what characteristics a wildlife contracep-
ive should have are not new [2,3]. One characteristic which is
narguably important, and generally agreed upon, is the lack of
egative health effects of a contraceptive in the target species [1–3].
o date, only a handful of studies have examined the effects of
mmunocontraceptives on blood chemistry. A porcine zona pel-

ucida immunocontraceptive vaccine administered to white-tailed
eer did not produce any significant changes in blood chemistry [4].
onaConTM, and a previous formulation of this vaccine, also did not
lter blood chemistry in treated white-tailed deer [5,6]. Although
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GonaConTM vaccine formulations have been tested in California
ground squirrels (Spermophilus beecheyi) and Norway rats (Rattus
norvegicus), these studies did not examine blood chemistry [7,8].
However, no overt adverse effects were noted in these species.

Black-tailed prairie dogs (Cynomys ludovicianus) are one of five
species of prairie dogs found in North America. Their habitat cov-
ers the Great Plains from northern Mexico to southern Canada.
Although they currently occupy less than 5% of their original range,
they are frequently the subject of controversy [9–11]. Because of
their influence on biodiversity, prairie dogs are considered key-
stone species [12]. In their role as a keystone species, prairie dogs
serve as prey, and their burrows provide shelter for several species
[13]. The role of urban prairie dogs as keystone species depends
on a number of factors, including colony size and makeup of the
surrounding urban environment [14]. Because of the limited oppor-
tunities for dispersal in urban environments, prairie dogs can exist
in densities up to five times higher than in rural environments,
which can lead to conflicts with humans [15,16]. In the urban envi-
ronment, this includes degradation of habitats through burrowing

and grazing, damage to ornamental vegetation, and spreading of
colonies into human neighborhoods [17,18].

Prairie dog habitat along the Front Range in Colorado is highly
fragmented, and many colonies in urban areas exist in small natural
areas [19]. Some of these areas are designated as natural areas by
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unicipalities, and others exist in highway right-of-ways or vacant
ots. Management of prairie dogs in urban areas is highly contro-
ersial, and municipalities are charged with maintaining colonies
hile minimizing damage associated with overgrazing and colony

xpansion [18].
In 1991, prairie dog populations in Fort Collins, Colorado occu-

ied 836 ha, 82% of which occurred in natural areas [20]. A survey
f Fort Collins residents in 1993 showed residents that experienced
o prairie dog related damage supported relocation over lethal
ontrol. Residents experiencing conflicts with prairie dogs were
ore likely to support lethal control measures [17]. Both groups of

takeholders were willing to support a combination of control and
reservation, rating protection of property and the presence of rap-
ors as important outcomes of management. Because of the diverse
ttitudes related to prairie dog management, nonlethal methods
hat allow the existence of prairie dogs but help minimize damage
elated to population growth need to be developed.

Management of prairie dogs in the past has included poisoning,
umigants, barriers, and relocation [21–23]. Barriers and relocation
end to be expensive, can be ineffective, and are dependent on avail-
ble sites [21,24–26]. The cost of control can outweigh the benefits
27]. Survival and reproductive rates increase after a population
eduction, either through lethal control or natural means such as
plague outbreak [28,29]. Contraception may provide an effective
nd acceptable alternative to help minimize colony expansion.

Immunocontraception is one such promising contraceptive
echnique. By conjugating an endogenous peptide to a foreign
arrier protein (e.g. mollusk proteins), the body is induced to
roduce antibodies to its own hormones. One such immunocon-
raceptive vaccine uses gonadotropin-releasing hormone (GnRH).
he hypothalamus releases GnRH which stimulates the release of
uteinizing hormone (LH) from the anterior pituitary. The gonads
roduce testosterone and progesterone in response to LH stimula-
ion, which stimulate the production of sperm and oocytes. When
n animal is injected with the GnRH vaccine, anti-GnRH antibod-
es bind to endogenous GnRH, preventing it from binding in the
nterior pituitary and releasing LH. As a result, production of testos-
erone and progesterone is decreased, and reproduction is reduced.

In the past, immunocontraceptive vaccines required the use
f two or more vaccinations. Recently, a single-shot vaccine has
een developed (GonaConTM) that is efficacious for ≥2 years [30].
he GnRH immunocontraceptive vaccine has been successfully
sed on rats (Rattus norvegicus) and California ground squirrels
Spermophilus beecheyi) for ≥2 years [7,8]. GonaConTM has not
een tested on black-tailed prairie dogs. Therefore, a laboratory
tudy was conducted to determine whether the GonaConTM vaccine
ould elicit an antibody titer response in black-tailed prairie dogs.

urther objectives of this study were to determine whether higher
oses of the vaccine elicited higher and more prolonged antibody
iters, and whether the vaccine altered blood chemistry profiles.

. Materials and methods

Prairie dogs were captured at several locations in Boulder
ounty, CO, USA under a Colorado Division of Wildlife Scien-
ific Collection Permit (06TR809). All animals were dusted with
pyrethrin-based flea powder and metal ear tags were attached

o both ears of each animal upon arrival at the National Wildlife
esearch Center. In addition, each animal was injected with a PIT tag
fter quarantine because of the number of lost ear tags. All animals

ere quarantined for 14 days, and prairie dogs were dusted again
ith a pyrethrin-based flea powder at the end of the quarantine
eriod.

Because the prairie dogs were trapped late in the year, it was dif-
cult to obtain a larger number of adults as was initially planned in
ne 29 (2011) 233–239

the protocol. At the time of quarantine, there were 12 adult females,
9 adult males, 9 juvenile females, and 9 juvenile males. Prairie
dogs were housed outdoors during quarantine where they were
subject to ambient light and temperatures. Animals were kept in
either 0.61 m × 0.46 m × 0.30 m or 0.46 m × 0.46 m × 0.30 m Toma-
hawk traps in covered outdoor facilities. Each trap was partially
covered with burlap and a length of PVC pipe was provided as a
hide for each animal.

During the experimental phase, prairie dogs were housed
indoors in a Simulated Natural Environment room (82.7 m2). Prairie
dogs were maintained on pine wood chips and were provided with
PVC pipes and wooden pallets for hides. Prairie dogs were main-
tained on a 12L:12D light schedule, 15.6–21.1 ◦C, ambient humidity
conditions, and were fed a combination of carrots, apples, grass hay,
and rodent block.

Prairie dogs were grouped by first by sex, then age, and finally
they were ranked by weight. The SAS statistical program was used
to randomly assign approximately equal numbers of males and
females of both age groups to treatment groups based on weight
[31]. The four heaviest adult males were randomly assigned to one
of the four treatment groups and the four heaviest adult females
were randomly assigned to one of the four treatment groups. This
process was repeated using the next four heaviest adult males
and the next four heaviest adult females until all adult males and
females were assigned to treatment groups. The same process was
repeated for male and female juveniles.

The study consisted of four treatment groups as follows: (1)
control, vaccinated with saline-AdjuVacTM only; (2) treated, vac-
cinated with 0.1 mL GonaConTM-AdjuVacTM (100 �g conjugate);
(3) treated, vaccinated with 0.2 mL GonaConTM–AdjuVacTM

(200 �g conjugate); (4) treated, vaccinated with 0.4 mL
GonaConTM–AdjuVacTM (400 �g conjugate). There were 10,
10, 10, and 9 prairie dogs in the 0, 100, 200, and 400 �g conjugate
groups, respectively. The control group consisted of 5 females (3
adults, 2 juveniles) and 5 males (2 adults, 3 juveniles). The 100 �g
conjugate group consisted of 6 females (3 adults, 3 juveniles)
and 4 males (2 adults, 2 juveniles). The 200 �g conjugate group
consisted of 5 females (3 adults, 2 juveniles) and 5 males (3 adults,
2 juveniles). The 400 �g conjugate group consisted of 5 females (3
adults, 2 juveniles) and 4 males (2 adults, 2 juveniles).

The C terminal end of GnRH (Global Peptide, Fort Collins, CO,
USA) was conjugated to a maleimide activated carrier (mollusk pro-
tein). GonaConTM was made by mixing the conjugate with an equal
volume of AdjuVacTM and passing the mixture through a Microflu-
idics M110L Microfluidizer® Processor (Newton, MA). GonaConTM

contains 1000 �g conjugate/mL. Prairie dogs were vaccinated with
0.1, 0.2, or 0.4 mL of the GonaConTM emulsion intramuscularly
in the upper thigh. Control animals were vaccinated with 0.4 mL
saline-AdjuVacTM emulsion in the upper thigh. Both control and
treated animals only received a single injection each. The injection
site was swabbed with isopropyl alcohol prior to injection.

Blood samples (≤1 mL) were taken from the femoral vein once
pretreatment and at 1, 2, 3, 4, 6, and 15 months post-vaccination.
Prairie dogs were restrained for bleeding using a canvas cone that
prevented the animal from turning around, but allowed normal
respiration. Animals were weighed each time a blood sample was
obtained using the Ohaus ChampII/CD-11 Indicator Scale (Ohaus
Corporation, Florham Park, NJ, USA).

At approximately 1 month post-treatment, it was observed that
many prairie dogs had fur missing from their backs. Because of
this, each animal was closely inspected for signs of molting and

reproductive development. Specifically, the location where hair
was missing was recorded as either dorsal, ventral, or lateral, and an
estimate was made as to percent hair loss. Females were examined
for signs of a swollen vulva, teat development, or lactation. Males
were examined for signs of scrotal development and pigmentation.
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ig. 1. Mean antibody titers in black-tailed prairie dogs (Cynomys ludovicianus) 1 mo
accine. Mean values were obtained by averaging antibody titers within treatment

Anti-prairie dog IgG antibodies were raised in a New Zealand
abbit. Blood was obtained from the rabbit and the serum purified
or rabbit IgG using the NAbTM Spin Kit (Pierce Biotechnology, Rock-
ord, IL, USA). The purified rabbit IgG contained anti-prairie dog
gG antibodies that were used for enzyme-linked immunosorbent
ssays (ELISA) as described below.

Plasma samples were analyzed by ELISA for GnRH antibody
iters. Prairie dog serum (50 �L) was serially diluted from 1:1000
o 1:128,000 on a 96-well microtiter plate. Antibody titers were
etermined by adding rabbit anti-prairie dog antibody (1:10,000)
o each well. Plates were washed and goat anti-rabbit antibody
1:6000) labeled with horseradish peroxidase from Sigma (prod-
ct no. A-6154) was added to each well. Color was developed
ith tetramethylbenzidine (TMB; Sigma T-3405)/phosphate citrate

uffer (Sigma P-9305). Color was proportional to the anti-GnRH
ntibody titer. In addition to PBS blank wells, a negative control
nd a positive control were included on each plate. Because of the
arge amount of background noise in the prairie dog samples, all
ptical densities (OD) for the prairie dogs were control corrected
sing the pretreatment samples at each dilution. The endpoint titer
as determined to be the last row for which an OD existed in the

ransformed data.
A general blood chemistry panel was performed on each

retreatment sample, and each sample taken 6 months post-
accination. Samples were analyzed on a VetScan Blood Chemistry
nalyzer (Abaxis, Union City, CA, USA). Because blood clotted too
uickly during the pretreatment blood draw, hematocrit data was
nly obtained for blood drawn 6 months post-treatment. Hema-
ocrit was determined in duplicate, and the results averaged for
tatistical analysis.

Antibody titers, blood chemistries, and body weights were ana-
yzed as repeated measures mixed effects models using prairie
ogs as random effects, and treatments as fixed effects (PROC
IXED) [31]. Means separations were carried out using PDMIX800

32]. Hematocrit and percent hair loss were analyzed using anal-
sis of variance (PROC GLM) because there was only a single
ata point for each animal [31]. Mean and standard errors of
he mean for these two variables were obtained using PROC

EANS [31].

. Results
Age (adult or juvenile) did not affect immune response to
onaConTM (F1,31 = 1.18, P = 0.2850; Fig. 1); therefore, juveniles and
dults were grouped together for further analysis. Antibody titers
ere higher in the treatment groups than in the control group
fter vaccination with 100, 200, or 400 �L GonaConTM vaccine or 400 �L saline sham
s at each time period.

(F3,47 = 18.98, P < 0.0001). Titers were significantly higher in the
400 �g group than in the 100 �g group. Titers were lower over-
all 15 months post-treatment than at 1 month post-treatment
(F6,193 = 70.33, P < 0.0001).

There were no differences among groups for alkaline phos-
phatase (F3,28 = 0.12, P = 0.9458), alanine aminotransferase
(F3,19 = 0.521, P = 0.6806), total bilirubin (F3,29 = 2.33, P = 0.0948),
glucose (F3,29 = 0.59, P = 0.6240), or globulin (F3,28 = 0.09, P = 0.9665).
All indicators of liver function (alkaline phosphatase, alanine
aminotransferase, total bilirubin, glucose) except globulin were
decreased at 6 months post-treatment from the pretreatment
values (P < 0.05; Table 1). Globulin values were approximately
the same during the pretreatment period as during the period 6
months post-treatment (F1,19 = 3.26; P = 0.0871).

Of the indicators of kidney function (albumin, amylase, blood
urea nitrogen, creatinine, total protein), only blood urea nitro-
gen varied among treatment groups (F3,24 = 3.74; P = 0.0244;
Table 2). There were no differences among groups for albumin
(F3,19 = 1.3, P = 0.3047), amylase (F3,25 = 0.45, P = 0.7226), creatinine
(F3.19 = 0.77, P = 0.5273), or total protein (F3,23 = 0.43, P = 0.7364).
Albumin, total protein, and blood urea nitrogen were increased at
6 months post-treatment from the pretreatment values (P < 0.05).
Amylase was decreased at 6 months post-treatment from the pre-
treatment values (F1,15 = 14.79; P = 0.0017). Creatinine values were
approximately the same during the pretreatment period as during
the period 6 months post-treatment (F1,21 = 2.84; P = 0.1071).

There were no differences among groups for calcium
(F3,29 = 1.69, P = 0.1918), phosphorus (F3,26 = 0.44, P = 0.7294), potas-
sium (F3,17 = 1.05, P = 0.3955), or sodium (F3,24 = 1.03, P = 0.3952).
Phosphorus (F1,19 = 2.91, P = 0.1039) and sodium (F1,25 = 0.02,
P = 0.9031) values were approximately the same during the pre-
treatment period as during the period 6 months post-treatment
(Table 3). Calcium and potassium values were increased at 6
months post-treatment from the pretreatment values (P < 0.05).
Hematocrit did not vary among treatment groups (F3,26 = 0.24,
df = 3, P = 0.8662; Table 4).

Weights did not vary among treatment groups (F3,35 = 0.57,
P = 0.6367), but increased in all groups until 6 months post-
treatment, then decreased slightly (F6,35 = 71.96, P < 0.0001; Fig. 2).
The percentage hair loss did not vary among treatment groups
(F3,35 = 0.40, df = 3, P = 0.7564; Table 5). Among treatment groups,

70, 50, 40, and 56% of the animals were molting in the control, 100,
200, and 400 �L groups, respectively. Molting occurred primarily
on the dorsal and ventral surfaces, and most of the animals showed
signs of molting on two surfaces. None of the animals examined
were in reproductive condition.
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Table 1
Liver function blood chemistry panel for black-tailed prairie dogs (Cynomys ludovicianus) vaccinated with 100, 200, or 400 �L GonaConTM vaccine or 400 �L saline sham
vaccine. Mean values were obtained by averaging values within treatment groups either pretreatment or 6 months post-treatment.

Group/phase Alkaline phosphatase (U/L) Alanine aminotransferase
(U/L)

Total bilirubin (�mol/L) Glucose (mmol/L)a Globulin (g/L)a

x̄ ± SEM n x̄ ± SEM n x̄ ± SEM n x̄ ± SEM n x̄ ± SEM n

Sham/PREb 95.9 ± 7.8 7 48.4 ± 6.0 7 7.6 ± 0.3 7 9.9 ± 0.6 7 45.4 ± 1.6 7
Sham/POSTb 55.9 ± 10.0 3 26.4 ± 8.7 3 3.4 ± 0.6 2 5.6 ± 0.8 3 38.1 ± 2.4 3
100 �L/PRE 85.8 ± 7.7 6 47.6 ± 6.3 6 7.4 ± 0.4 6 9.0 ± 0.6 6 42.6 ± 1.7 6
100 �L/POST 54.7 ± 7.4 7 25.5 ± 5.9 7 2.4 ± 0.4 5 6.7 ± 0.5 7 40.2 ± 1.7 6
200 �L/PRE 84.9 ± 7.8 6 43.0 ± 6.3 6 7.1 ± 0.4 6 8.5 ± 0.6 6 41.8 ± 1.7 6
200 �L/POST 55.8 ± 7.8 6 34.2 ± 5.6 8 2.6 ± 0.6 2 6.5 ± 0.5 8 43.0 ± 1.7 6
400 �L/PRE 86.0 ± 7.4 7 35.5 ± 5.9 7 7.6 ± 0.3 7 8.2 ± 0.5 7 41.7 ± 1.6 7
400 �L/POST 56.8 ± 7.7 6 25.8 ± 6.3 6 4.3 ± 0.6 2 5.9 ± 0.6 6 41.9 ± 1.9 5

a Glucose and globulin are also indicative of kidney function [45].
b PRE = pretreatment; POST = 6 months post-treatment.

Table 2
Kidney function blood chemistry panel for black-tailed prairie dogs (Cynomys ludovicianus) vaccinated with 100, 200, or 400 �L GonaConTM vaccine or 400 �L saline sham
vaccine. Mean values were obtained by averaging values within treatment groups either pretreatment or 6 months post-treatment.

Group/phase Albumin (g/L)a Amylase (U/L) Blood urea nitrogen
(mmol/L)a

Creatinine (�mol/L)a Total protein (g/L)a

x̄ ± SEM n x̄ ± SEM n x̄ ± SEM n x̄ ± SEM n x̄ ± SEM n

Sham/PREc 31.0 ± 1.2 7 139.6 ± 10.4 7 9.9 ± 0.6 7 68.2 ± 4.9 7 76.4 ± 1.9 7
Sham/POSTc 44.2 ± 1.8 3 123.5 ± 13.2 3 14.8 ± 0.9 3 89.0 ± 7.5 3 83.4 ± 2.9 3
100 �L/PRE 29.9 ± 1.3 6 149.2 ± 11.8 6 8.0 ± 0.7 6 67.8 ± 5.3 6 72.9 ± 2.1 6
100 �L/POST 43.1 ± 1.3 6 120.5 ± 9.1 7 12.3 ± 0.6 7 74.9 ± 5.3 6 84.3 ± 1.9 7
200 �L/PRE 31.7 ± 1.3 6 136.4 ± 9.3 6 9.1 ± 0.7 6 72.1 ± 5.3 6 72.8 ± 2.1 6
200 �L/POST 44.2 ± 1.3 6 110.8 ± 10.6 8 12.7 ± 0.6 8 73.7 ± 5.3 6 88.2 ± 1.8 8
400 �L/PRE 33.2 ± 1.2 7 133.5 ± 9.8 7 9.1 ± 0.6 7 78.5 ± 4.9 7 74.5 ± 1.9 7
400 �L/POST 44.3 ± 1.4 5 113.0 ± 10.5 6 12.2 ± 0.7 6 76.1 ± 5.8 5 86.0 ± 2.1 6

a Albumin, blood urea nitrogen, creatinine, and total protein are also indicative of liver function [33,45].
b Amylase is also indicative of pancreatic function [36].
c PRE = pretreatment; POST = 6 months post-treatment.

Table 3
Mean electrolyte values for black-tailed prairie dogs (Cynomys ludovicianus) vaccinated with 100, 200, or 400 �L GonaConTM vaccine or 400 �L saline sham vaccine. Mean
values were obtained by averaging values within treatment groups either pretreatment or 6 months post-treatment.

Group/phase Calcium (mmol/L) Phosphorus (mmol/L) Sodium (mmol/L) Potassium (mmol/L)

x̄ ± SEM n x̄ ± SEM n x̄ ± SEM n x̄ ± SEM n

Sham/PREa 2.6 ± 0.1 7 2.3 ± 0.2 7 152.7 ± 1.6 7 5.7 ± 0.3 7
Sham/POSTb 2.8 ± 0.1 3 2.3 ± 0.3 3 150.9 ± 2.5 3 8.4 ± 0.8 1
100 �L/PRE 2.5 ± 0.1 6 2.1 ± 0.2 6 148.5 ± 1.7 6 5.0 ± 0.3 6
100 �L/POST 2.7 ± 0.1 7 2.3 ± 0.2 7 149.4 ± 1.7 6 7.7 ± 0.4 3
200 �L/PRE 2.6 ± 0.1 6 1.9 ± 0.2 6 150.4 ± 1.7 6 5.0 ± 0.3 6
200 �L/POST 2.8 ± 0.1 7 2.4 ± 0.2 8 152.5 ± 1.7 6 7.8 ± 0.5 2
400 �L/PRE 2.7 ± 0.1 7 1.9 ± 0.2 7 151.4 ± 1.6 7 4.9 ± 0.3 7
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400 �L/POST 2.8 ± 0.1 6 2.1 ± 0.2

a PRE = pretreatment.
b POST = 6 months post-treatment.
. Discussion

One of the objectives of this study was to determine whether
he GonaConTM vaccine would elicit an antibody titer response in a
ose-dependent manner in black-tailed prairie dogs. The immuno-

able 4
ean hematocrits (L/L) in black-tailed prairie dogs (Cynomys ludovicianus) 1 month

fter vaccination with either 100, 200, or 400 �L GonaConTM vaccine or 400 �L saline
ham vaccine. Mean values were obtained by averaging hematocrits within treat-
ent groups; hematocrits were only determined at 6 months post-treatment. Mean

alues were not significantly different (P < 0.05).

Group Hematocrit (mean ± SEM) n

Sham 0.571 ± 0.021 5
100 �L 0.571 ± 0.017 7
200 �L 0.578 ± 0.015 10
400 �L 0.589 ± 0.016 8
6 149.6 ± 1.7 6 7.5 ± 0.5 2

logical response of black-tailed prairie dogs was generally dose

dependent with respect to the magnitude of the antibody titer.
The longevity of the response appeared to be only slightly related
to treatment. At 15 months post-treatment, mean antibody titers
were ≥1:77,000 in all three treatment groups. Antibody titers
≥1:128,000 are likely to be contraceptive, whereas it is unknown

Table 5
Mean percent hair loss (%) in black-tailed prairie dogs (Cynomys ludovicianus) 1
month after vaccination with either 100, 200, or 400 �L GonaConTM vaccine or
400 �L saline sham vaccine. Mean values were not significantly different (P < 0.05).
Mean values were obtained by averaging values within treatment groups.

Group Percent hair loss (mean ± SEM) n

Sham 8.0 ± 6.3 10
100 �L 14.0 ± 6.3 10
200 �L 12.5 ± 6.3 10
400 �L 17.8 ± 6.6 9
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Fig. 2. Mean weights (g) of prairie dogs (Cynomys ludovicianus) vaccinate

hether antibody titers of 1:77,000 would still be contraceptive.
ecause the average in the 400 �g group was 1:114,000, it is recom-
ended this dose be used to test the vaccine efficacy in a field trial.
lthough the control group appeared to have low level antibody

iters, this was likely due to cross reactivity of the rabbit anti-prairie
og antibody with something in the serum. To avoid this problem

n the future, rabbit anti-prairie dog antibodies should be affinity
urified prior to use in the ELISA.

GonaConTM did not alter liver function in this study. Although
epeated measures analysis did not find any significant differences
mong the groups, the 95% confidence intervals for total bilirubin
ndicate a near-significant effect. Post-treatment total bilirubin in
he 400 �g group was higher than the rest of the groups, but the
ontrol group had the second highest bilirubin level. This indicates
he near-significant effect may be a spurious result.

All liver enzymes except globulin decreased post-treatment.
ost clinical chemistry texts and journal articles are concerned
ith elevated liver enzymes as these indicate liver damage [33–35].
variety of factors such as anticoagulants, exposure to fluorescent

ight, and metabolically active cells can cause falsely decreased
lkaline phosphatase, total bilirubin, or glucose [36]. However,
one of these factors seem likely as anticoagulants were not used,
nd blood samples were always collected in the same manner at
pproximately the same time of day.

There are no known physiologically significant causes of
ecreased alanine aminotransferase or total bilirubin [36].
ecreases in alkaline phosphatase can be caused by hypothy-

oidism or impaired metabolism of vitamin B6, and decreased
lucose can be caused by hepatic insufficiency [36,37]. A diagno-
is of hepatic insufficiency does not seem to be supported because
one of the other liver enzymes indicated this. Plasma glucose
ecreases in rats and mice with age, and this may be the cause
f the decreased glucose in this study [34]. The results reported
y ISIS show alkaline phosphatase and total bilirubin are lower in
rairie dogs >1 year compared to prairie dogs <1 year which may
artially explain the results of this study [38]. The long-term effects

f decreased alkaline phosphatase, alanine aminotransferase, total
ilirubin, and glucose are unknown.

A comparison of our results to those previously published indi-
ates liver function was normal in prairie dogs during our study.
ll indicators of liver function except for glucose were within two
h 100, 200, or 400 �L GonaConTM vaccine or 400 �L saline sham vaccine.

reported ranges during both the pretreatment and post-treatment
phases [38,39]. Post-treatment alkaline phosphatase was lower
than the range reported by Keckler et al. [40]. Pretreatment glucose
levels were within reported ranges, but post-treatment glucose lev-
els were lower than reported ranges [39,41,42]. However, glucose
levels were within the range reported by ISIS during both the pre-
treatment and post-treatment phases [38]. Two studies reported
glucose ranges that were higher than those observed in this study
[43,44], and one reported ranges lower than those observed in this
study [40]. Differences in glucose levels may be due to differences
in the timing of feeding in relation to when blood samples were
drawn.

GonaConTM did not alter indicators of kidney function except
for blood urea nitrogen. Post-treatment levels of blood urea nitro-
gen were lower in treatment groups than in the control group.
However, blood urea nitrogen levels increased during the post-
treatment phase in all groups, including the control group. The most
likely explanation for the treatment effect on blood urea nitrogen is
the larger increase in the control group 6 months post-treatment.
There was no clear effect of GonaConTM dose on blood urea nitro-
gen. Hepatic insufficiency can decrease blood urea nitrogen, but
no effects were found on liver function. Blood urea nitrogen can
increase during the early stages of kidney disease when renal per-
fusion decreases, but many extrarenal factors such as diet can also
falsely elevate blood urea nitrogen [45].

Both albumin and total protein were increased during the post-
treatment phase. An increase in albumin tends to cause an increase
in total protein [46]. Both can be falsely elevated due to hemoly-
sis. However, hemolysis should also increase alkaline phosphatase,
alanine aminotransferase, and phosphorus, none of which occurred
in this study [36,47–50]. Albumin and total protein can also be
elevated with dehydration, although animals had free access to
water, apples, and carrots. The results reported by ISIS show alka-
line phosphatase and total bilirubin are lower in prairie dogs >1
year compared to prairie dogs <1 year; therefore, age may explain
the decrease observed in our study [38].
Indicators of kidney function were generally within reported
ranges, suggesting kidney function was normal in prairie dogs
during our study. Both albumin and amylase were within three pre-
viously reported ranges [38,39,43]. Total protein was within the
ranges reported by ISIS [38] and Broughton [39] during both the
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retreatment and post-treatment phases, but was higher during
he post-treatment phase than the range reported by Pfeiffer et al.
43]. Creatinine was lower during both the pretreatment and post-
reatment phases than the values reported by Pfeiffer et al. [43], but
ere similar to the ranges reported by ISIS [38] and Broughton [39].
lood urea nitrogen was within the ranges reported by ISIS [38]
nd Broughton [39] for both the pretreatment and post-treatment
hases. However, post-treatment blood urea nitrogen was higher
han the ranges reported in three other studies [40,41,43]. Keckler
t al. [40] reported lower ranges for albumin, creatinine, and total
rotein than those observed in this study.

GonaConTM did not have an effect on electrolytes in this study.
lthough calcium levels were increased in the post-treatment
hase, they were only increased by 0.2 mmol/L which is likely not
iologically significant. Excess levels of vitamin D can increase cal-
ium [51]. This seems unlikely given prairie dogs were housed
ndoors on a diet of carrots, apples, grass hay, and occasional rodent
lock. The amount of rodent block being fed was decreased toward
he end of the study due to weight gains in most prairie dogs.
otassium levels were also increased during the post-treatment
hase. Calcium and potassium levels can be artificially elevated
ue to hemolysis; however, as mentioned above, other indicators
f hemolysis were not elevated. Potassium may also be elevated
ue to underlying renal disease, although no effects were observed
n kidney enzymes [51].

A comparison of our results with those previously published
n the literature also indicates electrolytes were normal in prairie
ogs during our study. Calcium values were either similar to those
eported previously in the literature [38–40], or lower than the
eported range [43]. This suggests the slight increase observed in
his study was still within normal range. Both pretreatment and
ost-treatment potassium values were similar to those reported
or two laboratory studies, and to those reported for prairie dogs
n the field [39,40,52]. Pretreatment potassium levels were similar
o ranges reported by ISIS [38] and Pfeiffer et al. [43], but post-
reatment levels were higher than these ranges. However, both
retreatment and post-treatment potassium levels were within the
anges reported by Keckler et al. [40]. Both pretreatment and post-
reatment phosphorus and sodium levels were within reported
anges, although they were somewhat higher than those reported
y Keckler et al. [38–40,52].

Body weights in all groups increased until 4 months post-
reatment, then declined by approximately 50 g until 15 months
ost-treatment. This is most likely due to the reduction in the
mount of rodent block being fed during the study. Treatment
roups all had the same approximate mean body weight at the start
f the study, and no treatment effects on body weight were found.
reatment effects on body weight might not be observed in the lab-
ratory because all animals had the same access to food and shelter
nd were non-reproductive. Different results may be observed in
he field. Likewise, GonaConTM did not affect hematocrit.

Fewer prairie dogs were molting in the treated groups compared
o the control group, but those that were molting had a higher per-
entage of hair loss than control animals. Statistical tests did not
how significance despite the 400 �g group having nearly twice
he hair loss of the control group. However, standard deviations
ere very high making it unlikely statistical significance could be
etected. A post hoc power analysis shows a sample size of 56
nimals per group would be needed for 80% power at the lowest
tandard deviation observed in this study. One explanation for the
esults observed in this study may be that GonaConTM delayed the

iming of the molt slightly, such that treated animals were farther
long in their molt than control animals. Because prairie dogs were
nly handled once a month, it is possible for the majority of the
reated prairie dogs to have undergone and completed molting by
he time we observed the hair loss. In a natural setting, this obser-
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vation should not adversely affect prairie dogs as they would have
their winter pelage even before control animals.

GonaConTM is a safe contraceptive that was not associated with
any adverse health effects in this study. The changes observed in
blood chemistry in this study are most likely due to age or hus-
bandry. Further studies need to be conducted to determine the
effects of these factors on blood chemistry. GonaConTM will not be
associated with any nontarget hazards because it is injected. There
are no secondary hazards associated with the vaccine because it
is protein-based, and will be degraded in the gut of any animal
consuming a vaccinated prairie dog.

Although animals must be captured to administer the vaccine,
prairie dogs are relatively easy to trap. A concentrated trapping
effort over a period of several days to a couple weeks will likely be
sufficient to treat the majority of a colony. GonaConTM will likely
contracept prairie dogs for ≥ 1 year in the field using either 200
or 400 �g conjugate. It is recommended that 400 �g be used in the
field as antibody titers may last longer than the 200 �g dose. Multi-
ple years of contraception are desirable in this case so that animals
do not have to be trapped yearly. A 2-year study with GonaConTM

in the field showed contraceptive effects at the 400 �g dose, and
analysis is ongoing [Yoder, unpublished results]. GonaConTM could
be incorporated into management plans to help maintain prairie
dog populations while reducing habitat degradation due to over-
population.
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